
Introduction 

Floods, droughts, and heavy storms are some of the
manifestations of environmental events that cause tremen-
dous destruction and bring misery to human existence.
Flooding can bring havoc to property, infrastructure, ani-
mals, plants, and human lives. Floods have been a major
challenge in Pakistan for many years. The main reason for
these floods is extreme monsoon rainfall due to the unusu-
al climate-change-led seasonal cycle of land temperature in
Pakistan that has made the monsoon rainfall more severe
and produced a large volume of water in the northern
mountainous region of the country. Summer monsoon in
the subcontinent is going to be extreme. Temperature, CO2,

and CH4 records of past decades represent this change [1].
The monsoon in Pakistan starts in early July and remains
until the end of September. Besides human loss, the finan-
cial loss in the last six decades is estimated at $37.554 bil-
lion US. 

In construction of flood protection projects, information
on flood magnitude and their frequencies is critical [2].
Frequency analysis is the estimation of how often a speci-
fied event will happen. The main objective of FFA is to
relate the magnitude of extreme events to their frequency of
happening through the use of probability distributions [3]. 

This study is interesting in two aspects, first by select-
ing a robust estimation method and second by selecting a
best distribution for at-site FFA using AMSF data in the
country using different goodness fit tests. The first aspect is
a prerequisite for the second, in the sense that we need esti-
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mates of the parameters for different candidate distributions
in different goodness-of-fit tests to select best-fit distribu-
tion. We prefer the estimation method that gives optimum
results for these goodness-of-fit tests. As most of the prob-
lems in nature follow the Gaussian model and it is very easy
to deal with them. But in the case of extreme events our
Gaussian model is not the appropriate choice. We cannot
ignore these extreme events in our data because they give
us some hints for abrupt changes in the phenomena. In such
circumstances our usual models and methods of estimation
such as maximum likelihood, method of moments, and
least square are not appropriate choices. They are all influ-
enced by extreme events. We have alternative methods of
estimation of parameters named method of L-moments
(MLM) [4] and method of trimmed L-moments (MTLM)
[5], which are less affected by such extreme observations
without removing them from the data set. The estimates
from these methods are more reliable as compared to con-
ventional methods.

MLM is a recently developed estimation methodology
in statistics and probability theory commonly used in FFA
[2]. MLM introduced by Hosking [4], shows many advan-
tages over other conventional moments. L-moments of a
probability distribution exist only if its mean is finite.
Asymptotic approximations to sampling distributions are
better for L-moments than for ordinary moments. Although
moment ratios can be arbitrarily large, sample moment
ratios have algebraic bounds. They are robust to outliers
present in the data and give a better identification of the par-
ent distribution for a given data sample [4]. 

The MLM has been extensively used by many
researchers in a variety of fields such as engineering, mete-
orology, quality control, and hydrology (see for example 
[6-10]). So if our concern is about extreme events having
undue influence, a robust estimation method developed to
mitigate the influence of outliers on the final estimates
should be used [5]. Elamir and Seheult [5] introduced an
alternative robust version of L-moments called MTLM.
The underlying notion of development of trimmed 
L-moments is the same as L-moments with some modifica-
tion. MTLM was not developed with the intention to
replace the existing robust method for outliers (MLM), but
rather to complement them.

Practically, the true probability distribution of the data
at a site is unknown. One purpose of FFA is to estimate the
return period associated with a given flood magnitude. 
At-site FFA usually needs large data sets, but at most of the
gauging sites data is of smaller recorded length compared
to return periods of interest. But estimation of design floods
usually requires some degree of extrapolation to achieve
this objective. For the same reason, the selection of best fit
distribution is of immense importance, as a wrong choice
could lead to significant error and bias in designing flood
estimates, especially at larger return periods. In the USA the
log Pearson III (LPE3) has been suggested for extreme
floods. Generalized logistic (GLO) and Pearson type III
(PE3) are normally recommended in the UK and China,
respectively. In Australia, the log-Pearson 3, generalized
extreme value, and generalized Pareto distributions have

been suggested as the three best-fit distributions [11].
However, there is no theoretical basis [12] to select a single
probability distribution for all sites in a country (although
goodness of fit tests can be used for distribution selection)
[13]. The selection of only one candidate distribution
should be avoided as there may be several distributions that
pass statistical tests [11-14].

In Pakistan there is no official model that has been in
practice for at-site FFA. Some efforts have been made to
apply some models on such types of data, for example [15]
studied two models on annual peak flows data and found
that GEV is better than Gumbel distribution using flood
data of six sites, while the successive study by [16] consid-
ered two distributions as gamma distribution and GLO for
the same data and proposed that for some sites gamma dis-
tribution is a better choice and for some sites GLO is a bet-
ter choice. 

Our study is different in the sense that we are using
three estimation methods: two robust estimation methods
as MLM and MTLM, and one conventional method as
MLE for AMSF data of 18 sites. The selection of best-fit
distribution and best estimation method is decided on
three goodness-of-fit tests, MADI, PPCC, and AD test,
and L-moments ratio diagram. Initially we considered 
10 distributions in our study such as generalized logistic
(GLO), generalized extreme value (GEV), generalized
Pareto (GPA), generalized normal (GNO), Pearson type 3
(PE3), logistic (LOG), normal (NORM), uniform (UNI),
Gumbel (GUM), and exponential (EXP). On the basis of
the above-mentioned goodness-of-fit tests, finally three dis-
tributions as GPA, GLO, and GEV are found to be most
suitable distributions for different sites. Further, for initial
screening of the data to check basic assumptions of hydro-
logical data such as stationarity, homogeneity and indepen-
dence, we have applied an extensive range of parametric
and non-parametric tests such as the Mann-Whitney,
Krushkal-Wallis, Ansari-Bradley, and lag 1 correlation
tests, plus L-Jung box statistics. 

In the current study we are going to select best distribu-
tion for individual sites separately on the basis of different
goodness-of-fit tests using two robust estimation methods
(MLM and MTLM) and one conventional method (MLE).
Different goodness tests will support different probability
distributions. All of the models cannot be evaluated by the
same goodness-of-fit test [14-16]. 

After selection of best distribution for each individual
site, the results obtained from FFA can be used in designing
dams, culverts, bridges, and different kinds of flood-con-
trolling devices. 

Data and Methodology

Data Description and Its Initial Screening

The AMSF data of 18 sites of Pakistan located on five
rivers – namely the Indus, Jhelum, Chenab, Ravi, and Sutlej
– have been used in this study. These sites have been select-
ed keeping in mind the standard criteria of hydrological

2346 Ahmad I., et al.



data such as area, record length, quality of data, urbaniza-
tion, regulation, and climate variability and change. 
The data of these sites have been taken from the Water and
Power Development Authority (WAPDA) and Federal
Flood Commission (FFC). Usually, AMSF data at different
sites have been recorded in the peak of monsoon season
(from July to September). The information about different
sites used in the study is given in Fig. 1 and Table 1. 

The coefficient of skewness in Table 1 shows that all of the
sites are positively skewed and away from normality.

Statistical analysis of hydrological data at different time
scales generally meets in water resources, and planning
studies are established on a set of vital assumptions, for
example, stationarity, homogeneity, and independence. 
The violation of these assumptions will show erroneous
results. Stationarity (the absence of a trend) implies that the
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Table 1. Basic information about all sites used in the study.

Name of
sites

River
Latitude
(North)

Longitude
(East)

Sample size
(n)

Mean
Standard
deviation

Skewness
Coefficient
of variation

Tarbela

Indus

33.99 72.61 54 386,960 87,786 2.6264 0.22686

Kalabagh 32.95 71.50 46 464,720 151,840 1.1861 0.32674

Chashma 32.43 71.38 43 475,330 149,640 1.2258 0.3148

Taunsa 30.50 70.80 56 452,790 140,790 1.80402 0.31094

Guddu 28.30 69.50 40 615,100 309,460 1.46604 0.50311

Sukkur 27.72 68.79 35 546,610 309,470 2.62907 0.56616

Kotri 25.22 68.22 113 436,750 258,590 4.1194 0.59208

Mangla
Jhelum

33.15 73.65 54 132,480 136,390 4.2402 1.0295

Rasul 32.68 73.50 44 134,420 161,220 3.5825 1.1994

Marala

Chenab

32.68 74.43 54 308,570 196,420 1.0973 0.63654

Khanki 32.40 73.92 54 361,160 231,460 1.185 0.64088

Qadirabad 32.33 73.73 44 356,550 247,770 1.0299 0.69492

Trimmu 31.14 72.15 46 261,380 261,380 1.0988 0.7454

Panjnad 29.33 71.00 44 260,130 193,660 1.97993 0.74447

Balloki
Ravi

31.22 73.86 54 91,272.0 70,396.0 1.77128 2.2267

Sidhani 30.58 72.07 54 70,600.0 67,085.0 1.834 0.95022

Sulemanki
Sutlej

30.38 73.86 39 70,255.0 84,914.0 2.2672 1.2087

Islam 29.82 72.55 40 49,089.0 63,210.0 2.3624 1.2876

Fig. 1. Schematic diagrams of the 18 Sites of Pakistan used at-site FFA.
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future will be statistically not different from the past.
Absence of trend may be checked through time series plots,
Ljung box test statistics, and Spearman’s rank-correlation
coefficient. Homogeneity in a series implies that the data in
the series belongs to one population and subsequently has a
time-invariant mean. 

In the current study we are considering homogeneity
with respect to time. We have data on only one variable 
(i.e. the flow of water). We are not interested in space homo-
geneity, which is required for regional analysis. Sometimes
homogeneity also is considered as consistency (stability
with respect to mean and variance). Non-homogeneity in a
series may occur due to variety of sources (e.g. changes in
data collection method, climate change, changes in land
used in the catchment, and changes in abstractions and river
regulations). Assumption of homogeneity can be verified
through the Mann-Whitney and Krushkal-Wallis tests, both
of which are non-parametric. Mann-Whitney is a special
case of the Krushkal-Wallis test when dealing with two sam-
ples instead of k samples to check stability or homogeneity
with respect to location parameters. Verifying the homo-
geneity with respect to scale parameter is sometimes
required for hydrological data in frequency analysis or sys-
tem simulation. It is verified through the Ansari and Bradley
test, a non-parametric version of F-test, in order to avoid the
assumption of normality to check equality of variances.
Usually the annual time series or seasonal total time series
are independent. However, the assumption of independence
is checked under special cases when data are from rivers,
with a considerable carryover of groundwater flow from one
year to the next and whose catchments include large lakes.

Population L-Moments 
and Trimmed L-Moments

L-moments are summary statistics for probability distri-
butions and data samples. They are analogous to convention-
al moments. They also provide measures of location, disper-
sion, skewness, kurtosis, and other aspects of the shape of
probability distributions or data samples, but in their compu-
tation we use linear combinations of the ordered data values. 

Let Χ1, Χ2,…, Χr be the random sample of magnitude r,
with cumulative distribution function Ϝ(Χ) and quantile
function Χ(Ϝ). Let Χ(1:r)≤ Χ(2:r)≤ … ≤ Χ(r:r) be the order sta-
tistic of a random sample. For random variable X, the rth

population L-moment as explained by [4] is:

(1)
r=1, 2, …

In L-moments L highlighted that λr is a linear function
of the expected order statistics. Normally we need the first
four L-moments for r=1, 2, 3, 4.

The L-moments ratio is defined as:

(2)

(3)

(4)

...where τ is a measure of L-coefficient of variation (L-Cv),
and τ3 and τ4 are L- Skewness and L-Kurtosis, respectively.

In Trimmed L-Moments the expectations of the order
statistics of a conceptual sample (in the sense of popula-
tion L-moments) are replaced by expectations of the order
statistics of a larger conceptual sample, the size is
increased equal to the total amount of trimming. Trimmed
L-moments have a certain advantage over L-moments and
conventional moments. Trimmed L-moments can exist
even when a population mean does not exist. For example,
Cauchy distribution. Sample trimmed L-moments are
unbiased to the corresponding population quantities and
more robust to outliers. In MTLM the “E(Xr-k:r)” is substi-
tuted by “E(Xr+t1-k:r+t1+t2).” Therefore, for every r conceptual
(Population) sample, we increased the sample size from r to
(r+t1+t2) and work simply with the expectation of the r
order statistic Xt1+1:r+t1+t2

,…, Xt1+r:r+t1+t2
by means of trimming

t1, the lowest value(s) and t2 the largest value(s) from the
random sample. There is an important concern about the
optimal choice of trimming. According to [17], there are
two approaches for this purpose. Both approaches are based
on minimizing the criteria of variances, those trimming val-
ues will be chosen which provide less variance as compared
to others. 

We adopted the approach which based on minimizing
the sum of absolute differences between theoretical quan-
tile function and its trimmed L-moments representation.
This approach deals with the probability model as a
whole and will not be sensitive in choice of trimming for
each parameter separately. Furthermore, this approach
can also be used for optimal choice of trimming from the
given data. In the current study the values of the sum of
absolute differences of theoretical quantile function and
its trimmed L-moment representation come with mini-
mum value for all selected models in the study with trim-
ming of (1.0). We have also empirical justification of
using the trimming of (1.0) because the data of maximum
stream flows are considered to be a random sample from
some standard distribution such as GEV (see for example
[18]). 

In practice, the purpose of analyzing the data of AMSF
is to predict the magnitude of floods for relatively larger
return period events. Usually when analyzing the arid or
semiarid regions, many very low or even zero AMSFs
occur; [19-21] proposed a solution to this problem by cen-
soring the data from the lower side. It might be that small-
er sample values have only a nuisance value in the context
of upper quantile estimation. In our study, we used unequal
trimming value where just only one lowest value will be
trimmed from our random sample (t1=1, t2=0). The rth

trimmed L-moment (TL-moment) is denoted by λr
(t1,t2) and

defined as:



(5)

The population TL-ratios for (1, 0) trimming are
defined as:

(6)

(7)

(8)

...where λ1
(1,0) is the measure of location, τ(1,0) is the measure

of TL-coefficient of variation (TL-Cv), and τ3
(1,0) and τ4

(1,0)

are TL-Skewness and TL-Kurtosis, respectively.

Estimation of L-Moments and TL-Moments

In practice, L-moments need to be estimated after tak-
ing a random sample drawn from an anonymous distribu-
tion. Let x1, x2, …, xn be the sample and x1:n≤x2:n≤… ≤xn:n be
the order statistics of the samples, then we can define the rth

sample L-moments using [22] as:

r=1, 2, … (9)

The sample L-ratios are defined as:

(10)

(11)

(12)

...where ℓ1 is the measure of location, t is measure of 
L-coefficient of variation (L-Cv), and t3 and t4 are the sam-
ple L-Skewness and L-Kurtosis, respectively. In summary,
these statistics measure ℓ1, ℓ2, t, t3, and t4, and are very use-
ful for sample data. These measures are used to classify the
distribution from which the sample is drawn. Furthermore,
these measures are used in the estimation of parameters
when distribution is fitted to a sample by equating the sam-
ple L-moments and population L-moments. 

The rth sample TL-moments are defined as:

(13)

As in this study we use trimming of (t1=1,t2=0). In this
case we can write the above as given below.

(14)

(15)

The TL-skewness and TL-kurtosis are dimensionless
computed shapes of a data set. Parameters estimation of the
different distribution using MLM and MTLM has been
given in [3], and [23-25], respectively.

Goodness of Fit Tests

The goodness-of-fit tests such as MADI, PPCC, and
AD using MLM and MTLM are applied to find the most
suitable distribution for a specific site. MADI and PPCC
have been used in different studies (for example see [23],
[9, 25-27], and many others). Similarly, the AD test is fre-
quently used in many studies such as [12] and [28-31].

Mean Absolute Deviation Index (MADI) 

The goal of this method is to check whether a given dis-
tribution fits the data closely by selecting from a number of
candidate distributions. We choose that one which gives the
best fits to the data. The MADI is calculated by:

(16)

...where xi are the observed flows, yi the predicted flows,
and N is the number of observations at a site. Here we use
the Hosking plotting position formula to calculate predict-
ed flows using F, non-exceedance probability. 

(17)

… where j is the observation in ascending order and n is
sample size. The mean absolute deviation index (MADI) of
smaller value obtained for given distribution shows that the
distribution is more closely fitted to the actual data. 

Probability Plots Correlation Coefficient 
(PPCC)

Basically it is the relationship between current observa-
tions and corresponding predicted plotting position.
Correlation between the current and predicted flows are
given by:

(18)

=  

=  
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The range of correlation r is -1 to +1. When a value of
correlation of fitted distribution is closer to 1 or -1 it sug-
gests that the current data have been drawn from the fitted
distribution and when a value of correlation of fitted distri-
bution is closer to 0 it suggests that the current data is not
drawn from the fitted distribution. 

Anderson Darling (AD) Test

The AD test is used to check whether the given sample
of data is drawn from a given probability distribution. 
It is a general test to compare observed distribution function
to an expected distribution function. The AD test gives
extra weight to the tail than the Kolmogorov-Simonov test,
which makes it more powerful. The AD test statistics A2 as
defined as:

(19)

...where n is the sample size and F is the distribution func-
tion. The null hypothesis at the chosen level of significance
will be rejected if the calculated value of the above statistic
is greater than the critical value obtained from a table. 
In general, critical values of the Anderson-Darling test sta-
tistic depend on the specific distribution being used.
However, tables of critical values for many distributions
(except several the most widely used ones) are not easy to
find. We used the AD test as implemented in Easy Fit, which
uses the same critical values for all distributions. After cal-
culation of this statistic values for all of the operating mod-
els, one selects the model with the minimum AD value.

L-Moment and TL-Moment Ratio Diagrams

The simplest method to determine the best distribution
to fit the actual data is by using L-moment and TL-moment
ratio diagrams, which are based on relationships between
the L-moment and TL-moment ratios, respectively. The L-
moment and TL-moment ratio diagrams provide a graphi-
cal indication of which distribution can be expected to give
a better fit to the sample data or samples. Therefore, this
allows better discrimination between the distributions.

Quantiles of Best Fit Distribution

One of the objectives of FFA is to get handy estimates
of the quantiles for return period of scientific significance.
After selection of best fit distribution and estimation of its
parameters, we need to find the Quantiles’estimates corre-
sponding to different return periods (T). Maximum stream
flows do not occur with any fixed pattern in time or mag-
nitude. Large floods naturally have large return periods
with less probability and vice versa. The relationship
between return periods and occurrence of an extreme event 
(e.g. amount of flow greater than or equal to some thresh-
old value in a dam) may be established through the notion

of geometric random variable as: T=1/p, where p is the
probability of occurrence of T year return period event 
(i.e. X ≥xt). 

Suppose we have a five-year return period event that
yields a probability of occurrence equal to 0.2 and the cor-
responding quantile value based on this probability and
best-fit distribution (whatever you select) is 500 cusec
(say). We can say that a five-year return period event will
occur (≥ 500 cusec on average once in five years) with
probability 0.2. Sometimes we are interested in finding out
the probability of a T-year return period event to occur at
least once in the next N years. The answer to this equation
can be achieved using the relationship given by:
1–(1–1/T)N. In the case of a five-years return period event
(as discussed above), the probability of this five-year
return period event occurring at least once in the next five
years is 0.672.

Results and Discussion

All of the tests mentioned in the previous section show
that AMSF is stationary, homogeneous, and independent,
and is suitable for further analysis (Fig. 2). 

The L-moments ratio diagram shows visual inspection
about the best distribution for different sites. On the basis of
this ratio diagram and three goodness-of-fit tests, it is found
that out of 10 distributions, only three are suitable for
AMSF data of different sites. The visual inspection is clear
in the following ratio diagram (Fig. 3) and results of other
goodness-of-fit tests are shown in Table 2.

From Table 2 it is clear that using MADI and GLO is
the best fit distribution for five sites, while GEV and GPA
for six and seven sites, respectively. Using AD, numbers of
sites for which GLO, GEV, and GPA are best fit distribu-
tions are seven, one, and 10, respectively. Similarly, using
PPCC numbers of sites for which GLO, GEV, and GPA are
best fit distributions are five, four, and nine. The results of
the ratio diagram are very close to the AD test. Among three
estimation methods, MLM is found to give best results for
most of the sites. 

For four sites, trimmed L-moments is also found to give
best results. MLE is a suitable estimation method only for
the Kotri site. One of the reasons behind this may be of sam-

2350 Ahmad I., et al.

Fig. 2. Time series plots of Kalabagh Site.
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ple size greater than 100 observations. Most of the sites fol-
low GPA distribution followed by GLO and GEV. None of
these sites follows GNO, PE3, LOG, NORM, UNI, GUM,
and EXP, indicating that these distributions have a poor fit
for AMSF of any site in this study. This can also be viewed
from the L-moments ratio diagram. Minimum numbers of
35 observations are being considered in each site in order to
avoid any misleading results in every goodness of fit test due
to small sample size. One of the objectives at-site FFA is to

estimate a different return period associated with a given
flood magnitude (quantiles of best fit distribution/maximum
annual discharge values), which are useful for hydrologists
in the planning and design of hydraulic structures. To gain
this purpose we constructed Table 3. Quantile estimates are
calculated on the basis of best-fit distributions for each site
individually and it is found that these quantiles are in close
agreement to observed values of AMSF, which can be indi-
cated through extreme value plots.

At-Site Flood Frequency Analysis... 2351

Table 2. Results of different goodness-of-fit tests and estimation methods.

Sites name MADI PPCC AD Ratio diagram Best distribution Best method of estimation

Tarbela GLO GLO GLO GLO GLO MLM

Kalabagh GEV GLO GLO GLO GLO MLM

Chashma GEV GLO GLO GLO GLO MLM

Taunsa GLO GLO GLO GLO GLO MLM

Guddu GPA GLO GLO GLO GLO MLM

Sukkur GPA GEV GPA GPA GPA MLM

Kotri GEV GEV GEV GLO GEV MLE

Mangla GLO GEV GLO GLO GLO MLM

Rasul GLO GLO GEV GEV GEV MLM

Marala GEV GPA GPA GPA GPA MTLM

Khanki GPA GPA GPA GPA GPA MTLM

Qadirabad GPA GPA GPA GPA GPA MTLM

Trimmu GEV GPA GPA GPA GPA MTLM

Panjnad GPA GPA GPA GPA GPA MLM

Balloki GEV GPA GLO GPA GPA MLM

Sidhani GPA GEV GPA GPA GPA MLM

Sulemanki GPA GPA GPA GPA GPA MLM

Islam GPA GPA GPA GPA GPA MLM

Fig. 3. L-moments ratio diagram for 18 sites of Pakistan.
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Conclusions

Due to climate change, the forecasting future flows is
burdened with uncertainty. In vulnerable regions even large
data sets cannot solve the problem. However, this study
investigates the selection of best-fit probability distribution
and estimation method for at-site FFA in Pakistan using the
AMSF of 18 sites. Three goodness-of-fit methods such as
mean absolute deviation index (MADI), the Anderson
Darling (AD) test, and probability plot correlation coeffi-
cient (PPCC) are adopted for this purpose. L-moments ratio
diagram is also used for visual inspection of goodness-of-
fit criteria. Out of 10 probability distributions, GPA, GLO,
and GEV are considered the top three best fit distributions
for annual maximum stream flow data of different sites in
Pakistan. Most sites follow GPA (56%), followed by GLO
(33%) and GEV (11%). Among three estimation methods,
the MLM is found to be the more suitable method at 72%
of the sites, MTLM at 22% of the sites, and MLE at only
5% of the sites. Flows based on the fitted distribution are
also in close agreement to the observed flows. 
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